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Abstract 

 An experimental methodology intended to characterize the autorotation efficiency and vehicle dynamics of  

Samara-like MAVs is presented.  The scale inherent in these vehicles precludes the use of most conventional in situ 

sensors, and so data collection is limited to external observation.  The studies presented herein demonstrate a new 

technique for collecting flight data from a vision based motion capture system. A test apparatus has been constructed 

to yield repeatable initial conditions, minimizing uncertainty of the Samaras dynamic state prior to data collection. 

The test specimen are constructed of an ultra-violet cured liquid polymer, which is dispensed and cured via the use 

of rapid prototyping machine. The use of this machine allows damaged subjects to be discarded and replaced with 

one of identical characteristics, ensuring the similarity of the models tested. This work is of interest as it relates to 

theoretical predictions of descent velocity, and its dependence on wing loading. The mechanical Samaras in this 

study are compared on the basis of equal wing loading. The results of these experiments identify an optimal 

geometry for minimal descent rate, as well as producing a quantitative Fourier series representation of the roll and 

pitch. Additionally, a new relationship has been established which allows for the prediction of descent velocity, as 

well as radius of precession. This information will aid in the development and validation of an inflow model for the 

mechanical Samara. 

Introduction 

Samaras, or winged seeds, are the sole method by 

which several species of plants propagate their seed. 

Geometric configurations for maximal seed dispersal has 

evolved into two main classes of seeds. Both of which 

execute autorotational flight as they fall from the tree, and 

one of which additionally rotates about its longitudinal axis. 

This discussion is limited to Samaras which execute only 

autorotational flight. 

Advancements in technologies associated with the 

sensing and control aspect of unmanned vehicles has 

allowed conventional micro-scaled vehicles to be equipped 

with real-time systems. The vast capabilities  provided to 

these small systems is limited by the battery life and power 

consumption of all on-board electronics and actuators. The 

majority of the power consumed in an aerial system is 

sustaining a desired flight mode. The primary focus of this 

flight mode is to negate the effects of gravity. Perhaps a new 

paradigm is needed, whose focus is the design of a vehicle 

with a passively stable primary mode of operation, one 

which requires little or no additional power to 

attain/maintain this mode of transit. The natural flight of a 

Samara is one of elegance and balance; trading gravitational 

potential energy for rotational kinetic energy which 

perpetuates an aerodynamically stable helical descent.  

In nature the phenomenon of autorotation is 

utilized by various species of trees. The optimality of the 

autorotation heavily influences the population dynamics.  

The evolution of the Samara provides a near infinite set of 

feasible autorotation configurations, each with distinct 

dynamics. The goal of this work is to characterize the 

impact of span-wise chord variation on the descent velocity, 

and attitude dynamics. This will provide a baseline for 

mechanical Samara planform design. Additionally insight 

into the locations of lift production will be obtained. This 

information will aid the development and verification of a 

dynamic/aerodynamic  six degree of freedom mechanical 

Samara model.  

Previous work in this field has characterized surface 

roughness, center of gravity placement, leading edge thickness, 

and planform design
1,2,3

. These studies are however limited in 

scale (< 1 gram) and accuracy. The majority of the work to 

date describes the mechanisms of flight for natural Samaras, 

which presently are incapable of supporting any useful 

payload. The simulated mass considered here corresponds to 

that of an embedded electronics package ~ 5 grams.  

Experimental Setup: 

To capture the flight path of the mechanical Samara 

the VICON vision system is used
4
. The system collects data by 

capturing 2D images of the subject which is fitted with retro-

reflective markers. The VICON system strobes light at the 

frame rate of the camera. The light incident on the surface of 

the marker returns to its source, reducing errors commonly 

caused by interference. The light returned to the lens allows for 

a quick computation of the centroid of the marker.  Three-

dimensional position is obtained from triangulation of camera 

observations. The setup of the workspace is tracked real time 

by the VICON system, the simulated workspace can be seen in 

Figure 2,3. The cameras are labeled one through seven, and are 

placed around the test area, Figure 1. 

 

 
1a 



 

1b  

Figure 1a:Vicon Ray traces a Samara in flight; 1b: 3-View 

of test area with cameras labeled 1-7. 

 

A simple mechanical release mechanism is used to 

hold the mechanical Samara at a predetermined angle. The 

grip is grooved to ensure exact placement of the Samara for 

each drop test. This release mechanism is mounted ~12m 

above the ground, and is released after transient motion has 

been eliminated with the physical contact the mechanism 

makes with the platform mounted to the ceiling. The Samara 

is placed into the gripper, and hoisted to the ceiling by an 

attached thread of monofilament, which drapes over a pulley 

and back down to the ground, where it is attached to a 

fishing rod.  

 

 Pulley & Abutted Claw 

 

Claw grasping a Samara 
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Figure 2a: Release mechanism ‘closed’ and in contact 

with platform; 2b: claw in ‘open’ position; 2c: Claw 

‘closed’ grasping NAVE A41.  

In order to minimize wind disturbances which may 

effect the flight dynamics, these experiments were 

conducted in a room which had no ventilation. The test 

facility encompassed two platforms which provided the area 

for camera placement. The viewing angle of the cameras is 

critical in capture as well as calibration of the system. A 

minimum of three cameras are needed to calibrate the 

ground floor plane. This step in the calibration dictates the 

skew, if any, of the vertical axis. To avoid potential pitfalls 

from a poorly calibrated ground-floor-plane, markers are 

distributed in the area of interest, and the VICON system 

takes an average of the location of the markers which 

enhances the previously calibrated floor-plane. This 

calibration gives the user a least squares estimate of the error 

associated with the tracking of each marker. Tracking errors 

for the trials included here are less than 1mm of position 

uncertainty. 

Each subject is calibrated for exact marker 

placement, including its possible range of motion. This 

accounts for dissimilar marker placement between trials and 

subjects. The algorithm used to correlate marker position 

uses this information in the event a marker is temporarily out 

of the field of view of at least two cameras. In some 

instances, manual marker labeling is required. 

The marker placement is done in such a fashion as 

to interfere minimally with the aerodynamics of the subject. 

The subjects are designed with grooves which trace the 

outline of intended marker location, ensuring similar marker 

placement between subjects and trials. Typical marker 

geometry is spherical, and at the very least highly three-

dimensional. The use of non-standard markers for these 

experiments is chosen with the intention of interfering 

minimally with the aerodynamics. The markers are made of 

retro-reflective tape provided by VICON, and manufactured 

by 3M. A hole-punch is used to ensure similarity of marker 

dimension, and the markers are made approximately three-

dimensional by placing markers symmetrically on both sides 

of the Samara. Three markers are placed on the Samara 

permitting attitude determination. Marker placement for the 

rigid body model is shown in figure 3 in VICON inertial 

coordinates, note the three markers are coplanar. 
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Figure 3a: Mechanical Samara displaying labeled 

markers and trajectories. b: Marker placement and 

definition with VICON Inertial axes coordinate system 

 

When working with the VICON software it is necessary to 

define a rigid body model which defines the degrees of 

freedom of each of the segments of the subject. This helps to 

ensure only physically possible solutions are converged 

upon in the post processing of a trial. The definition of a 

rigid body is done so with a fixed body coordinate system, 

hence the Euler angles reported for a clockwise descent are 

different then those of a counterclockwise descent. It is thus 

necessary to do an additional rotation of ! about the fixed 

body X-axis to avoid the singularity this introduces in the 

calculation of the orientation. 

Physical Model: The models are designated by the 

planform geometry A41, B41, C41 and D41. The geometry 

of the models tested are not simple scaled-up versions of 

natural Samaras. The design involved a trial and error 

method, aimed at producing a mechanical Samara capable of 

being tested in the limited space of the laboratory; the main 

constraint being the height of the ceiling. 

Each subject is designed with identical cross-sectional 

properties which include: thick leading edge, 1.54 mm, 

followed by .1 mm region that extends to the trailing edge, 

Figure 3. Each cross section contains longitudinal stiffeners 

which appear as .55mm, .6 mm, and .85 mm circles, from left 

to right, on the airfoil cross section. 

 

 

 
 

Figure 6: Mechanical Samara airfoil cross-section 

 

The models were designed using CAD software 

capable of calculating precisely the model surface area and 

the location of the center of mass as well as overall model 

mass. These parameters are held constant over the four 

different subjects, Figure 5. 

 The CAD model can then be exported as a stereo-

lithography file (STL), which is a representation of the 

Samaras geometry as approximated by triangles of varying 

dimension. This file is then used by the Eden350 to create 

the physical prototype. The tolerances of the machine are 42 

micro-meters in the X-Y plane, and 16 micro-meters in the 

Z-plane
5
. Subjects are built in the same orientation on the 

machine to ensure similarity between models.  

Design of the mechanical Samara involves precise 

placement of the center of mass, as a poor choice results in a 

less stable and efficient autorotation. It has been found to be 

advantageous to include a thick leading edge.  In previous 

experiments, this has resulted in a 33% decrease in decent 

velocity
1
. In the same study increased surface roughness 

decreased the descent velocity. The mechanical Samara 

designed for these experiments exhibit a smooth surface 

finish. 

The mechanical Samara tested have the physical 

properties listed in Table 1. It should be noted that all 

mechanical Samara are planar symmetric, hence zero twist. 

The inertias reported here lack the final addition of the 

marker mass, however the final mass does include this 

addition. 

Table 1: Physical Properties of the mechanical Samara 

NAVE  A41 B41 C441 D41 

1st Principal 

Inertia 

I11 

Kg•m
2
 

8.99e
-6

 6.92e
-6

 9.32e
-6

 6.93e
-6

 

2nd Principal 

Inertia 

I22 

Kg•m
2
 

4.39e
-7

 5.05e
-7

 4.5e
-7

 5.99e
-7

 

3rd Principal 

Inertia 

I33 

Kg•m
2
 

9.42e
-6

 7.41e
-6

 9.76e
-6

 7.52e
-6

 

Radius m .1686 .15 .1683. .1359 

Mass Kg .0526 .0526 .0526 .0526 

Surface Area m
2 

1.24e
-2

 1.24e
-2

 1.24e
-2

 1.24e
-2

 

 

 

The geometry of the planform area can be 

represented through Fourier series approximation of the 

chord as it varies with the radius, as seen in Figure 4. Each 

of the approximated geometries are reported with the mean 

square fit error. 

 
Figure 4: Samara geometry approximated by a Fourier 

cosine series. 

 

 



 
NAVE A41 

 

 
NAVE B41 

 
NAVE C41 

 

 
NAVE D41 

Figure 5: Schematic of test subject geometry, all 

dimensions in mm. 



The coefficients of the Fourier series 

corresponding to the above geometries is detailed in Table 

2, for the series: 

!(t) = a
o
+ an cosn"o
n=1

6
# t  

 

(1) 

 

Table 2: Fourier series coefficient for Samara geometry. 

        Samara Model 

Fourier 

Coefficients A41 

 

B41 

 

C411 

a
o

 .0358 .0414 .0362 

a
1
 .001 -.0006 -.0071 

a
2

 -.0084 -.0113 -.0085 

a
3

 .0032 .0029 .004 

a
4

 -.0017 -.0024 -.0017 

a
5

 .0012 .0019 .0019 

a
6

 -.0011 -.0012 -.0013 

 

The Geometry of the NAVE D41 model is simple and can 

calculated from the schematic provided in Figure 5. 

 

Data Reduction and Analysis 

Attitude Representation: Subsequent testing of the various 

Samara provided an insight into the governing dynamics as 

they varied with the geometry. 

 Attitude representation requires separate basis for 

the  fixed inertial axes ( F ) and the body axes which is fixed 

to the Samara ( B ).  

F = ƒ̂
x
, ƒ̂

y
, ƒ̂

z{ }  (2) 

 
B = %e

i
, %e
j
, %e
k{ }  

(3) 

 

r
r[ ]
B
= R
1
!( ) • R2 "( ) • R3 #( ) •

r
r[ ]
F

 (4) 

The transformation from the inertial frame to that of the 

body frame is described by three Euler angles. The order of 

rotation is as follows: a ‘yaw’ rotation ! about the ƒ̂
z
axis, 

followed by a ‘pitch’ rotation ! , about the new ƒ̂
y
 axis, and 

lastly a ‘conning’ rotation ! , about the new ƒ̂
x
 axis. The 

transformation matrix can then be written as: 

 

R
BF

=

c!c" s!c" #s"

c!s" s$#s!c$ c!c$+s!s"s$ c"s$

s!s$+c!s"c$ s!s"c$#c!s$ c"c$

%

&

'
'
'

(

)

*
*
*
 

 

(5) 

 

The notation is such that s! = sin! , and c! = cos! . 

This rotation sequence is standard for aircraft
6
; the diagram 

for which is shown in Figure 7. 

 
Figure 7: Rotation sequence, Inertial coordinates to 

body fixed coordinates. 

 

The Euler angular rates are defined in the inertial coordinate 

system, Figure 7. The angular rates in the inertial frame are 

finite rotations, which do not commute, it is thus necessary 

to define the body angular rates separately. The sum of the 

inner products of each of the inertial angular rates with the 

body axis of interest yields the body angular rates Eq[6-9].  

 

 
p = ! &" sin# + &$  (6) 

 
q = &! cos" sin# + &" cos#  (7) 

 
r = &! cos" cos# $ &" sin#  (8) 

 

 A schematic detailing the axis of these rotations is shown in 

Figure 8. 

 
Figure 8: Roll, Pitch and Yaw definitions for body fixed 

coordinate system. 

 

The 3D marker position data provides a means of 

resolving the orientation of the mechanical Samara in space. 

The three markers are sufficient to describe an orthonormal 

basis from which the rotation matrix representing the 

Samaras orientation can be formed.  

 
 Figure 9: Samara marker placement and definition  

(VICON body fixed coordinate frame)  

 

 The first vector forms the 
 
%e
j -axis in body frame 

coordinate and is the line from the Samara center of mass to 

the marker located ~70mm in the positive VICON Y-

direction. The remaining basis require an intermediate vector 



from which to compute a cross product defining the 
 
%e
k

-axis 

as follows: 

!
1,2
= M

1
"M

2
 (9) 

!
1,3
= M

1
"M

3
 (10) 

! =
"
1,3

"
1,3

 
 

(11) 

The intermediate vector !
1,2

 can be normalized forming the  

 
%e
i
 body frame axis. The vector !  is formed by normalizing 

!
1,3

, this vector is the used to compute the body frame 
 
%e
k

 

axis. The final body axis is formed in the cross product of 

 
%e
k

 and 
 
%e
i
. This set form the orthonormal basis which 

defines the orientation of the body with respect to the inertial 

frame. The rotation matrix A is formed with each column 

defined by one of the basis vectors.  The entries of the A 

matrix  are: 

A =

!
11

!
12

!
13

!
21

!
22

!
23

!
31

!
32

!
33

"

#

$
$
$

%

&

'
'
'

 

 

 

(12) 

The elements  of the matrix are found in the computation of 

the basis,  

 

%e
i
=
!
1,2

!
1,2

="
11
+"

21
+"

31
 

 

 

(13) 

 
%ej = %ek ! %ei ="12 +"22 +"32

 (14) 

 
%e
k
= ! " %e

i
=#

13
+#

23
+#

33
 (15) 

This matrix exhibits the normal properties of a rotation 

matrix; the determinant is unity, and so the transpose is 

equal to the inverse: 

det A( ) = ±1 (16) 

AA
T
= !  (17) 

Once three-dimension marker position is obtained and the 

basis set of the Samara body axes are computed, the Euler 

angles can be deduced from the newly formed rotation 

matrix [A]. The Euler angles provide a non-unique set of 

rotations which can describe the Samaras orientation, 

however a singularity arises near !  = ±! 2 . Away from 

the singularity the angles are as follows: 

!  = arcsin(-"
13

)  (18) 

!  = arctan("
11

/"
12

)  (19) 

!  = arctan("
23

/"
33

)  (20) 

The use of the MATLAB function atan2, the four quadrant 

arctangent of the real component of the arguments in the 

range of -! ! arctan 2("
1
,"
2
) ! ! , is needed to retain 

continuity of  signs between successive time steps. The 

limited range of the arctan2 calculation is a short-coming of 

the Euler angle attitude representation which requires special 

treatment of the remaining rotations near the singularity. A 

simple and effective solution is to set the angle ! = 0 , 

leaving the final angle ! as: 

!  = arctan("
21

/"
31

)  (21) 

 The Euler angles !  and !  display periodic 

behavior and are roughly 90
o
 out of phase with one another. 

This is to be expected as ‘pitching’ leads ‘conning’ by 90
o
 in 

full scale helicopters. This implies the maximum force on 

the Samara !
max

, displaces the Samara maximally !
max

, 

one quarter revolution later. This cyclic behavior can be seen 

in Figure 10. 

 
Figure 10: Euler angle time history for NAVE A-D41 

  

The scope of flight in this study is characterized by 

a nearly constant radius of precession, or more precisely a 

standard deviation, !
r

, of no more than 6.25% of the mean. 

The radius of precession is computed in cylindrical 

coordinates where r
i
= x

i

2
+ y

i

2 , where (x
i
, y

i
)  denote the 

location of the center of mass of the Samara, or M1 from 

Figure 9. This parameter is the conciseness of the helical 

descent trajectory, such that a larger r
i
 implies a larger 

amount of transverse motion. The tabulated data shown in 

table 3, identify some key performance parameters, namely 

optimal geometry for minimal descent. The Samara rotate 

about the center of mass or CG, resulting in the majority of 

the wing area being located on one side oft the CG. The 

distance of the area centroid of this portion of the Samaras 

are calculated with respect to the CG and shown in table 4. 

dz(y) = !
1
y"!

2
 (22) 

r
CG
(x) = !

1
x
2
+!

2
x+!

3
 (23) 

 

 

 

 



Table 3: Curve Fit parameters for dz(y) and r
CG
(x)  

 !
1

(mm) !
2

 (mm) !
3

 (mm) 

dz(y) (m/s) -.0211 .3324 n/a 

95%  Confidence -.0298 -0.876 n/a 

Bounds -.0124 0.212 n/a 

r
CG
(x)  (mm) -5.415  150.9  -509.5  

95%  Confidence -7.325 125 -593 

Bounds 3.505 176.8 -426 

 

 
Figure 11: Influence of Area Centroid on descent velocity 

and radius of precession 

  

 Note the centroid location farthest fro the CG 

corresponds to the Samara which as well has the lowest 

descent velocity. Another characteristic elucidated by the 

area centroid location is the radius of precession of the CG. 

There is a quadratic relationship between the X-distance of 

the area centroid from the CG, and the radius of precession 

of the CG. These relationships are shown in Figure 11, and 

the curve fitting parameters are listed in Table 3. This 

relationship suggests the wing area centroid is a first cut 

estimate of the center of lift. 

 

Table 4: Flight performance metrics 

  r       !
r

     dr      !
dr

      dz      !
dz

     X         Y 

NAVE m m m/s m/s m/s m/s mm mm 

   A41 .07 0 .31 .03 -1.6 .01 4.6    64.6 

   B41 .16 .01 .06 .02 -1.7 .02 6.9 59.0 

   C41 .27 .01 .09 .04 -1.5 .06 5.5 69.8 

   D41 .40 .02 .10 .05 -1.8 .05 8.8 56.2 

 

The standard deviation which is a function of the sample 

variance is computed as: 

! =
1

N
(x

i
" x )2

i=1

N

#  

 

(24) 

Where x  is the sample mean; 

x =
1

N
x
i

i=1

N

!  
 

(25) 

 x
i
is the local value of the parameter, thus the units of !  

are the same as those of x
i
. 

  
12a: NAVE A41 12b: NAVE B41 

  
12c: NAVE C41 12d: NAVE D41 

Figure 12a-d: Flight path of the various geometries. The 

marker definitions, M1-3 correspond to those defined 

previously in Figure 9. Note all dimensions are in meters. 



The flight path and the Samara, as recorded by 

VICON is shown in Figure 12a-d. The center of mass is 

shown in red. 

In applications involving periodic signals it is 

desirable to enhance signal to noise ratios in order to extract 

representative waveforms. Signal averaging techniques
7,8

 

previously implemented in applications such as structural 

health monitoring
9
 and optical filter design

10
,  are employed 

here as a means of reducing a periodic signal into one 

discernable waveform. For a deterministic signal x(t)  of 

period T , a measurement model can written as: 

 

z(t)=x(t)+!(t )  (25) 

 

Where !(t)  is additive sensor noise. For x(t) measured over 

N periods, the ensemble average and ensemble variance can 

be approximated as: 

 

!z (t ) =
1

N

z(t + nT )

n=0

N"1

#  

 

(26) 

! z
2
(t ) =

1

N

z(t + nT ) "#z (t )[ ]
2

n=0

N"1

$  

 

(27) 

 

Confidence intervals for estimated parameters can be 

formulated from estimation theory
11

.  The 95% confidence 

interval of these measurements with regard to the signal 

averages is approximated as: 

 

Z0.95 (t ) = !z (t )±1.96" z
(t )  (28) 

 

This average is then described for each Samara by Fourier 

Sine or Cosine series of varying order.  The specific 

parameters used for the ensemble averaging are listed in 

table 5. 

 

Table 5: Time synchronous average parameters for each 

of the subjects tested. 

NAVE  ƒ Hz T sec points N 

A41  p 7.25 .137 500 8 

 q 7.25 .138 500 8 

B41 p 7.27 .138 384 6 

 q 7.41 .135 384 6 

C41 p 7.32 .137 411 7 

 q 7.32 .137 411 7 

D41 p 5.71 .175 455 6 

 q 5.71 .175 455 6 

 

 

The roll, pitch and yaw time history for each of the subjects 

is displayed in Figure 13a-16a. Following the time histories 

is the ensembles overlaid in blue, with signal average in 

black. The 95 % confidence interval is the dashed red line. 

The confidence interval bounds tends to increase from 

Samara A-D. Possible causes for this include but are not 

limited to; structural vibrations; susceptibility to small wind 

disturbance; and decreased aerodynamic damping resulting 

from a change in the center of pressure. 

 The number of ensembles averaged is highly 

dependent on the settling time of the individual Samara, and 

the limited drop height. This number could be increased at 

the cost of uncertain initial conditions by giving the Samara 

a pre-spin upon launch. 

 The bar graphs shown for each Samara indicate the 

presence and relative contribution of the individual modes to 

the roll and pitch rates. The yaw rate and curve fit are 

neglected here as the variation in amplitude is ! ± 2 rad/sec 

or 5% of the mean, and can be approximated with small 

error as a line.  

p
A
(t ) = a

o
+ an cosn!o
n=1

8
" t  

 

(29) 

q
A
(t ) = a

o
+ bn sinn!o
n=1

5
" t  

 

(30) 

p
B
(t ) = a

o
+ an cosn!o
n=1

8
" t  

 

(31) 

q
B
(t ) = a

o
+ bn sinn!o
n=1

5
" t  

 

(32) 

p
C
(t ) = a

o
+ an cosn!o
n=1

8
" t  

 

(33) 

q
C
(t ) = a

o
+ bn sinn!o
n=1

5
" t  

 

(34) 

p
D
(t ) = a

o
+ an cosn!o
n=1

8
" t  

 

(35) 

q
D
(t ) = a

o
+ bn sinn!o
n=1

5
" t  

 

(36) 

 

The results of the Fourier analysis are tabulated and shown 

in Table 6. Note the significant presents higher order modes 

in the rotational dynamics.  

 

Table 6: Fourier coefficients for roll and pitch 

 !o  a0 b0  a1 b1  a2 b2  a3 b3  

Unit Hz rad rad rad rad 

p
A
(!
0
t )  7.25 -.4885     -6.536 9.55 2.89 

q
A
(!
0
t )  7.25 0.1852     -.3729 -8.01 1.21 

p
B
(!
0
t )  7.27 -1.533 -7.74 8.05 3.9 

q
B
(!
0
t )  7.41 -.1067 -.065 -8.53 .006 

p
C
(!
0
t )  7.32 -.2538 -8.01 -6.053 3.797 

q
C
(!
0
t )  7.33 .9172 1.5976 7.892 -.1076 

p
D
(!
0
t )  5.71 -.257 7.0644 -7.64 -4.612 

q
D
(!
0
t )  5.71 1.99 4.22 10.1 -1.899 

 

 



 
13a: NAVE A41 Time history of roll, pitch and yaw for 

steady descent; 

 
Figure 13b: NAVE A41 the time synchronous average 

roll and pitch; 

 
Figure 13c: Fourier decomposition of the roll and pitch 

time synchronous average.  

 

 
Figure 14a: NAVE B41 Time history of roll, pitch and 

yaw for steady descent; 

 
Figure 14b: NAVE B41 the time synchronous average 

roll and pitch; 

 
Figure 14c: NAVE B41 Fourier decomposition of the roll 

and pitch time synchronous average. 



 
Figure 15a: NAVE C41 Time history of roll, pitch and 

yaw for steady descent; 

 
Figure 15b: NAVE C41 the time synchronous average 

roll and pitch; 

 
Figure 15c: NAVE C41 Fourier decomposition of the roll 

and pitch time synchronous average. 

 
Figure 16a: NAVE D41 Time history of roll, pitch and 

yaw for steady descent; 

 
Figure 16b: NAVE D41 the time synchronous average 

roll and pitch; 

 
Figure 16c: NAVE D41 Fourier decomposition of the 

roll and pitch time synchronous average. 

 

 

Conclusion: 

The significant findings of this study are: 1.) Vision 

based motion capture is possible, and even preferred for the 

study of subjects at this scale, (4000<Re<9000); 2.) In 

steady vertical descent roll and pitch are neither constant nor 



small as suggested in previous studies
2,3

. Those observation 

were most likely due to a lack of precision instrumentation, 

which has only recently become available. 3.) The planform 

geometry of the Samara tested resulted in a variation in 

descent velocity by as much as 16.7%, and clearly indicates 

a geometry for minimal descent velocity; NAVE C41 4.) 

Four new mechanical Samara designs have been presented, 

each capable of supporting a 5 gram electronics payload. 5.) 

A new Low Reynolds number airfoil has been presented and 

tested. This airfoil geometry has been proven to be effective 

over 4 variations in planform geometry. 6.) A new stability 

criterion for the flight of a mechanical Samara has been 

established, namely the standard deviation from the axis of 

precession of the center of mass. 7.) The radius of precession 

of the center of mass is highly variable, >500%, over the 

range of models tested. The Samara with the smallest radius 

of precession of the center of mass, as well displayed the 

smallest variation in roll, pitch, and yaw rates; 8.) A linear 

relationship has been established between the Y-distance of 

the area centroid and the descent velocity of the Samara. 9.) 

A quadratic relationship has been established between the X-

distance of the area centroid and the radius of precession of 

the center of mass. These relationships parameterize the 

design space of the Samara planform, giving insight into the 

geometric nature of the underlying physics. 
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