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Micro/Nano Unmanned Aerial Systems (UAS) are an emerging class of vehicles uniquely
suited to performing covert missions. Autonomy is an essential aspect of the intended func-
tion of UAS, and development of a dynamic model will enable control and state estimation
algorithm synthesis. To that end, a linear model for the heave dynamics of a mechanical
samara (winged seed) in hovering flight was identified from data collected external to the
vehicle by a visual tracking system. Identification and error estimation efforts utilized a
frequency response-based system identification. The two mechanical samara vehicles of
differing scale compared in this study represent the first demonstration of controlled flight
of a vehicle of this kind.

I. Nomenclature

θ0 Control Input norm

x, y, z Inertial Frame Position m

φ, θ,ψ Euler Angles rad

u, v, w Translational Velocities m/s

p, q, r Rotational Velocities rad/s

RBF Direction Cosine Matrix rad

Kd Derivative Gain
Kp Proportional Gain
Ki Integral Gain
εi Infinitesimal Quantity

Ix, Iy, Iz Principal Moments of Inertia Kgmm2

Zw Heave Stability Derivative 1/s

Zθ0 Collective Input Stability Derivative m/s2

ẇ Heave Acceleration m/s2

λ Roots of Characteristic Equation

II. Introduction

IN recent years a new paradigm of flight has emerged which encompasses micro-scale aircraft that are
bio-inpired. These highly maneuverable platforms are capable of hovering flight and are ideally suited for
operation in a confined environment. The reconnaissance mission envisioned requires a high level of autonomy
due to the fast dynamics of the vehicle and the limit on communication in the likely areas of operation, i.e.
caves and buildings. Development of a state space model of the system dynamics about a trimmed flight
condition will facilitate future model-based controller and observer design enabling autonomous operation.

Aerial systems which satisfy the dimensional constraints outlined by the DARPA ”Micro Air Vehicle”
(MAV) initiative include fixed-wing, rotary-wing and flapping-wing vehicles. The simplest and most mature
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of these platforms are fixed-wing vehicles which boast speed, simplicity and well-known dynamics, however
the limitation of forward flight restricts functionality in cluttered environments that can be traversed by
rotary and flapping-wing platforms. Micro-scale helicopter linear dynamic system models have been described
by Conroy et al,1 using system identification tools developed by Tischler2 and Mettler3 for substantially larger
vehicles including the Yamaha RMAX helicopter.

A substantial challenge in modeling the dynamics of micro-scale flight is the general lack of knowledge of
the complex low Reynolds number flow regime they inhabit. Additionally the vehicles are highly susceptible
to wind gusts as a result of low vehicle inertia. The complexity of the system can be reduced substantially
by identifying a linear model which describes its reaction to forces imposed by a control input. A model
description of this nature lends itself well to modern control and state estimation.

The intent of this manuscript is to characterize the flight dynamics and control of a rotary-wing MAV
based on one of natures most efficient fliers: the seed of the maple (Acer) tree or samara. Identification and
error estimation of the vehicle dynamic model was done with data collected by a visual tracking system,4 and
utilization of a frequency response-based system identification package developed at the Army Aeroflightdy-
namics Directorate (AFDD) located at Moffett Field, CA. Frequency domain system identification is limited
to linear models valid only for small perturbations about the trimmed condition.

Model structure is based on a reduction of the longitudinal dynamics of a helicopter in hover to a linear
system described by stability derivatives. Cramer Rao insensitivity bounds describe the likely error resulting
from multiple trials and is used to validate the estimates of the identified parameters. Additional validation
of the linear model is done through implementation of a linear controller with feedback provided by the
visual tracking system.

III. Vehicle Description

The concept of a single-wing rotating aircraft is not a new one, and in fact the first vehicle of this type was
flown in 1952 in the woods surrounding Lake Placid, New York by Charles W. McCutchen .5 A more recent
vehicle was developed and flown by a team led by Lockheed Martin Advanced Technology Laboratories .6
The prototype called MAVPro incorporated an outrunner motor with an 8 inch diameter propeller, weighed
514 grams, rotated at a stable 4 Hz, and could climb to 50 ft with radio controlled actuation of a trailing
edge flap. The MAVPro incorporated the AG38 airfoil, and exhibited a rectangular planform geometry.
The various single winged rotating aircraft developed over the years have made no attempt to utilize the
most basic mode of transit of natural samara, autorotation. Additionally, airfoil cross sections and planform
designs have had no similarity to that found in natural samaras.

The authors intent in the design of the vehicles discussed herein was to emulate the natural samara, and
in doing so take advantage of the highly efficient autorotation which it employs. As such, samara-I and
samara-II use unconventional and samara-inspired planform geometry and airfoil cross-sections developed
previously by the authors.4 The sign convention and corresponding vehicle orientation is shown in Figure 5.
These vehicles perform stable autorotation and are capable of landing at terminal velocity without sustaining
any damage. In the event of motor failure, the vehicles gently autorotate back to the ground. Conventional
monocopter designs apply torque to the vehicle with a thrust device slightly off-set from the Y-axis, and in
the case of MAVPro the propeller spins in the Y-Z plane and influences the stability about the Y-axis. This
configuration results in the propeller fighting the pitch input from the flap and reduces controllability of the
vehicle. The 5-inch diameter propeller of the samara-I,II is spinning in the X-Z plane and opposes applied
torque about the X-axis providing additional stability.

The design and construction of the samara used in these experiments was done with the intent of providing
a stable vehicle that could be tested in a limited area. The unconventional wing and body structure are
the result of an iterative design process which has produced on the order of one-hundred vehicles. The
resultant vehicles are extremely damage tolerant as they employ flexible structures which deflect upon impact,
effectively increasing the time over which the impact load is applied to the vehicle. The configuration and
relative size of the vehicles are shown in Figure reff:flightconfig. Advantages over traditional micro-scaled
VTOL configurations include passive stability, efficient autorotation, low body drag, mechanical simplicity,
low cost, high payload capacity, and substantial damage tolerance.

The design and construction of the samara used in these experiments was done with the intent of providing
a stable vehicle that could be tested in a limited area. The unconventional wing and body structure are
the result of an iterative design process which has produced on the order of one-hundred vehicles. The
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resultant vehicles are extremely damage tolerant as they employ flexible structures which deflect upon
impact, effectively increasing the time over which the impact load is applied to the vehicle. The configuration
and dimensions of the vehicles are shown in Figure 1. Advantages over traditional micro-scaled VTOL
configurations include passive stability, efficient autorotation, low body drag, mechanical simplicity, low
cost, high payload capacity, and substantial damage tolerance.
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Figure 1. Roll, Pitch and Yaw definitions for body fixed coordinate system

Figure 2. Samara in Flight Configuration

IV. Vehicle Design

The primary load-bearing structure of the vehicle is 0/90 ply .025 thick carbon-fiber composite laminate,
with opposed parallel tension and compression members mounted to the motor and wing. In this configu-
ration the structure provides a high degree of flexure in the Z-direction and a high degree of stiffness in the
plane of rotation. The angle at which the motor is held provides protection from ground impingement on
take-off and landing.

Flight time of the samara-I is roughly 20 minutes with a 0.025 Kg, 480mAh 7.4 V two-cell Lithium-
Polymer battery, for a total vehicle mass (GW) of 0.075 Kg. The maximum gross take-off weight (GTOW)
of the vehicle is 0.125 Kg, and the maximum dimension is 0.27 m, Figure 1. The second and smaller samara
tested, called samara-II is designed and constructed in a similar fashion to samara-I, however the total mass
is 0.038 kg, and maximum dimension is 0.18 m, Figure 1. Table 1 details the mass breakdown of samara-
I,II as well as two hobby radio controlled rotorcraft. The mass breakdown is similar for the four vehicles,
however the samara benefits from a less complex and therefore lighter Propeller/Rotor system and require
no transmission as it directly drives the propeller. This decrease in complexity creates a more robust and
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Table 1. Weight Data (In terms of percent of GW)

Parameter samara-II samara-I Hobby Rotorcraft 1 Hobby Rotorcraft 2

Mass 0.038 Kg 0.075 Kg 0.3 Kg 1.8 Kg
Maximum GTOW .048 Kg .125 Kg

Maximum Dimension .18 m .27 m
Percent Gross Weight GW GW GW GW

Propeller/ Rotor System 5.3 2.6 11.0 11.2
Tailboom Assembly 2.6 3.3 8.0 9.1

Main Motor (electric) 10.5 10.7 15.4 10.5
Fuselage/ structure 26.3 27.6 7.0 15.1
Main Transmission Direct drive 2.0 3.4

Landing Gear 2.6 2.7 2.3 3.4
Control System 18.4 16 5.7 18.3

Flight Control Avionics 7.9 4 29.4 2.4
Power Source 26.3 33.3 19.2 26.6

Payload 0 0 0 0
Flight Time 10min 20min
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Figure 3. Robotic samara component diagram

V. Stability Properties

A substantial advantage of the samara-I vehicle is that it is a passively stable system. A simple qualitative
stability analysis of the samara-I in a steady hover, or autorotation illustrates this point. In a steady hover
the thrust from the propeller is balanced by the drag from the body and wing, resulting in a near constant
rotational rate about its principal inertial axis, Iz. Alternatively, in autorotation the resistive torque of the
wing drag is equal to the driving torque of the lift, for a net zero torque. Consider the assumed motion
r = r0 and p, q << r0 in steady hover, or autorotation. To investigate whether the motion is stable or not,
neglecting aerodynamic contributions, a small moment is applied to the body such that after the moment is
applied the resultant angular velocities are as follows:

p = εp (1)

q = εq (2)

r = r0 + εr (3)
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Where εi(i = 1, 2, 3) are infinitesimal quantities. To determine the evolution of these perturbed angular
velocities in time it is convenient to use the Euler equations as follows:

Iz(ṙ0 + ε̇r) + (Ix − Iy)εpεq = 0 (4)

Ixε̇p − (Iy − Iz)(r0 + εr)εq = 0 (5)

Iy ε̇q − (Iz − Ix)(r0 + εr)εp = 0 (6)

The change in angular velocities is small, and as such allows linearization of the above equations by elimi-
nating quadratic and higher order terms in εi yielding:

Iz ε̇r = 0 (7)

Ixε̇p − (Iy − Iz)r0εq (8)

Iy ε̇q − (Iz − Ix)r0εp (9)

This implies εr is constant. The behavior of the remaining angular velocities can be understood with
eigenvalue analysis. Assuming a solution of the form:

εp(t) = Epe
λt (10)

εq(t) = Eqe
λt (11)

Next, we can introduce the expansions into the linearized equations:
[

Ixλ (Iz − Iy)r0

(Ix − Iz)r0 Iyλ

] [
Ep

Eq

]
eλt =

[
0
0

]
(12)

The solution requires that the determinant of the coefficient matrix be zero, which yields the characteristic
equation:

IxIyλ2 − (Ix − Iz)(Iz − Iy)r2
0 = 0 (13)

The solution is:

λ = ±i

√
(Ix − Iz)(Iz − Iy)r2

0

IxIy
(14)

Two types of solutions are possible and depend on the principal moments of inertia. If Ix > Iz and Iy > Iz,
or if Ix < Iz and Iy < Iz (characteristic of samara-I and samara-II) both roots of the characteristic equation
are imaginary. In the absence of nonconservative forces, the system is marginally stable.7 The inertial
parameters of the samara vehicles as well as the resultant eigenvalues are listed in Table 2.

Table 2. Inertia properties, rotation rate, and resultant eigenvalues for samara-I and samara-II

Ix Iy Iz r0 λ

Kgmm2 Kgmm2 Kgmm2 rad/sec

samara-I 248 562 797 80.5 0 + 77i rad/sec

samara-II 35 98 122 76 0 + 59i rad/sec

VI. Experimental Setup

A. Visual Tracking System

Position and orientation of each vehicle was collected at a rate of 500 Hz, using a Vicon visual tracking system.
During a flight test, the tracking system utilizes eight cameras to track the three-dimensional position of
three retro-reflective markers placed on the samara wing. Each marker is spherical with a diameter of 5 mm.
The three dimensional shape of the marker allows for better tracking by the Vicon system. A model of the
vehicle geometry and the exact locations of the markers are used for least-squares estimates of the position
of the center of mass. Figure 4 displays images of the virtual capture volume and the rigid body dynamic
model of the samara wing created by the retro-reflective markers.
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Figure 4. Representative VICON workspace and flight path of samara-II

B. Telemetry Synchronization

Pitch input is measured by two methods, both on, and off-board the vehicle. The state of the actuator is
measured off-board the samara on an identical system receiving commands from the same transmitter. Two
markers are placed on an arm attached to the off-board actuator to track the input to the vehicle. During
a flight test the samara vehicle and the off-board actuator are simultaneously tracked allowing the angular
displacement measured on the ground to be correlated to the motion of the samara vehicle, both of which
are synchronized in time. Available Inputs and Outputs for Identification

C. Vehicle Inputs

It is advantageous to track the wing pitch angle via the off-board system as it provides the ability to track
the collective inputs when the vehicle is not flown within the capture volume of the Vicon vision system. The
on-board method includes measuring both pitch angle, θ, and coning angle, β, via the markers placed on
the wing. It is interesting to compare the on-board and off-board measurements as the on-board angles are
influenced by the aerodynamic forces acting on the vehicle. Nothing was presumed to be known about what
forces or deflection angles were generated given a change in the actuator, therefore all control inputs are
normalized. The input command is given by θ0 for collective input and is normalized such that θ0 ∈ [−1, 1].

D. Kinematic Output

The Vicon obtained estimates are exceptionally low noise as compared to commercial grade on-board attitude
estimation sensors. The position noise variance was estimated by recording data while not moving the vehicle,
and is shown in Table 3. The low noise presence in the position estimate allows the inertial position to be

Table 3. Measurement Characteristics

Measurement Symbol Source Resolution Variance Unit

Time t VPS 1.000× 10− 3 - s

Control Input θ0 VPS - 7.8000× 10− 3 norm

Position x, y, z VPS - 0.613× 10− 3 m

Orientation φ,θ,ψ VPS - 7.800× 10− 3 rad

Translational Velocity u, v, w VPS - 0.251× 10− 3 m/s

Rotational Velocity p, q, r VPS - 1.200× 10− 3 rad/s

numerically differentiated to yield inertial velocity estimates.

{Ẋ, Ẏ, Ż}T =
∂

∂t
{X, Y, Z}T (15)

The body fixed velocities can be directly computed using the direction cosine matrix representation of the
orientation estimate, RBF, and the inertial velocities as:

{u, v, w}T = RBF {Ẋ, Ẏ, Ż}T (16)
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E. Attitude Representation:

The transformation from the inertial frame to that of the body frame is described by three Euler angles, and
is standard for aircraft. The transformation matrix can then be written as:

RBF =




cψcθ sψcθ −sθ

cψsθsφ− sψcφ cψcφ + sψsθsφ cθsφ

sψsφ + cψsθcφ sψsθcφ− cψsφ cθcφ



 (17)

The notation is such that sθ = sin θ, cθ = cos θ. This rotation sequence is standard for aircraft.8 The Euler
angular rates are defined in the inertial coordinate system, Figure 5. The angular rates in the inertial frame
are finite rotations, which do not commute, it is thus necessary to define the body angular rates separately.
The sum of the inner products of each of the inertial angular rates with the body axis of interest yields the
body angular rates:

p = −ψ̇ sin θ + φ̇ (18)

q = −ψ̇ cos θ sinφ + θ̇ cos φ (19)

r = −ψ̇ cos θ cos φ− θ̇ sin φ. (20)

A schematic detailing the axis of these rotations is shown in Figure 5. The 3D marker position data provides
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Figure 5. samara coordinate system

a means of resolving the orientation of the mechanical samara in space. The three markers are sufficient to
describe an orthonormal basis from which the rotation matrix representing the samaras orientation can be
formed.

F. Open-Loop Flight Test Data

The first step in a system identification is to pilot the vehicle in a flight envelope where the dynamics of
interest are thoroughly excited. The vehicle was piloted within the capture volume of the vision system while
simultaneously collecting the inputs and vehicle kinematics. The pilot attempted to excite the vehicle over
a wide range of frequency content to best determine the relationship between input and output. For proper
system identification, it is important to collect flight data open loop as a closed loop feedback system would
alter the natural dynamics of the vehicle. The open loop setup is shown in Figure 6. Typical portions from
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Figure 6. Open-loop control setup

recorded open loop data sets are shown in Figure 7. The heave velocity, w, is found by applying the central
difference approximation to the vehicle vertical position data collected by the Vicon system. Figure 7 also
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compares the inputs given to the vehicle during one flight test as calculated both on-board and off-board
the mechanical samara. Both on-board and off-board methods demonstrate similar pitch inputs, but the
on-board measurements display more oscillations, demonstrating the effects of the aeroelastic forces acting
on the wing.
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Figure 7. Flight data collected on samara-I

G. Closed-Loop Flight Test Data

Implementation of closed loop flight is enabled by an off-board feedback system. The ground control station
setup is shown in Figure 8. During closed loop flight, the position and orientation of the mechanical samara
are tracked by the Vicon visual system, which sends the information to a LabVIEW controller program.9
The LabVIEW program takes into account the vehicles vertical position and heave velocity to create wing
collective commands which are sent through a PIC 18F8722 microcontroller. The PIC microcontroller in
turn sends the commands to the vehicle through a Spektrum Transmitter.

PIC 18F8722 

Micro Controller 

Spektrum 

Transmitter 

LabView 

Controller 

VICON 

System 

! 

[x,y,z, ˙ x , ˙ y , ˙ z , p,q,r,",#,$]

! 

r,"

! 

p,"
! 

q,"

! 

x

! 

y

! 

z

! 

[h,w]

! 

control

Vehicle Dynamics 

Figure 8. Ground Control Station (Closed Loop)

VII. Experimental Results

A. System Identification Method

A beneficial step in the identification process is computing the coherence function. This step provides a
measure of the extent to which an output is linearly related to the input over some frequency range .2 The
magnitude squared coherence is given by:

γ2
xy(ω) ≡ |Rxy(ω)|2

|Rxx(ω)||Ryy(ω)| (21)

where Rxy is the cross spectral density between the input and output, Rxx is the auto-spectral density of
the input and Ryy is the auto-spectral density of the output. An input/output pair with low coherence
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implies either the input has no effect on the output or the effect is nonlinear. However, an input/output
pair with high coherence implies the relationship can be modeled well by a linear model such as a transfer
function or state space model. Tischler 2 suggests a coherence of 0.6 or above for some useful frequency
range is necessary for accurate transfer function identification. The magnitude squared coherence for the
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Figure 10. samara-I,II Identified model Bode diagram, for On-board and Off-board data collection and transfer
function ẇ = Zww − Zθ0θ0

input/output relationship of samara-I using the on-board actuator system for input measurement is shown
in Figure 9. It can be seen that the useful frequency for this input/output pair lies in the range of about 0.3
to 10 Hz. The coherence and useful frequency range predicted by the on-board measured θ0 is equivalent to
that of the off-board measurement, Figure 9. The similarity of the two predictions validates the hypothesis
that off-board measurements of θ0 are capable of capturing the physics relevant for system identification.
The on-board measurement of θ0 for samara-II demonstrates some high frequency behavior above 55 rad/sec
and may be a result of the aeroelasticity of the wing in flight, Figure 9. All three coherence plots demonstrate
similar ranges for strong relationships between input and output.
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B. Open Loop Control

The transfer function, G, of the pitch input to heave dynamics was modeled as a first-order continuous-time
process model:

G(s) =
K

s− Tpl
=

W (s)
Θ(s)

(22)

where K is the static gain and Tpl is a time constant. Given a flight data set with sufficient coherence, as
seen in Figure 9, the MATLAB System Identification Toolbox10 can be used to complete frequency response-
based system identification. The input and output data is imported to the system identification GUI where
it is filtered to 100 rad/sec using a fifth-order Butterworth filter. Table 4 shows the values identified for
the Mechanical samara for the collective to heave velocity transfer function using data from both methods
of measuring pitch input. In comparing the two methods of identification, it is important to note that both
methods identify K and Tpl to be on the same order of magnitude, proving both methods have similar
capabilities in capturing the input-output relationship. The transfer functions of the computed models are
plotted in Figure 10,9.

Table 4. Identified robotic samara parameters

samara-I samara-I samara-II

θ0 Off-board On-board On-board
K -13.643 -24.689 -21.44
Tpl -4.864 -3.814 -1.690

C. Error analysis

A state space model was created allowing for error estimation using the Cramer-Rao bounds, and is repre-
sented as

ẋ = Ax + Bu (23)

y = Cx (24)

Where x is the state vector, A is the dynamics matrix, B is the control matrix, and C is the output matrix.
The state space model for this identification reduces to

ẇ = Zww − Zθ0θ0 (25)

where is the heave acceleration, Zw is the stability derivative for heave velocity and is the collective input
control derivative. The Cramer-Rao bounds are theoretical minimum limits for the expected standard
deviation in the parameter estimates which would be obtained from several experiments.2 Tischler suggests
the following conditions represent the most valid parameter estimates:

CR%20% (26)

Ī%10% (27)

The CR and Ī percentages were found using the Comprehensive Identification of FRequency Responses soft-
ware (CIFER ).11 Table 5 shows the parameter estimates and associated error bounds of the identified state
space model. The table demonstrates the validity of the identified parameter estimates, as all parameters
meet the conditions specified. Table 5 : The model computed from both on/off-board measurement of the
collective angle input is capable of capturing most of the low frequency inputs, but can be seen to average
higher frequency excitation. The model computed from the off-board measurement of collective angle input
performs well at the lower frequencies, but tends to average the higher frequency excitation. The model
tends to exhibits more overshoot than that of the model derived from on-board measurements. The small
differences in the performance of the two methods of input measurement validate the ground based input
observation method. A comparison of the poles identified by MATLAB and CIFER is displayed in Figure
11. The control derivative is a negative number as an increase in collective pitch results in an increase in
rotor thrust.
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Table 5. Mechanical samara Identified Parameter with Cramer-Rao Error Estimates.

Term Value CR% Ī%
On-board samara-I Zw -6.382 10.04 4.231

- Zθ0 -15.880 4.733 1.994
Off-board samara-I Zw -4.303 9.413 3.808

- Zθ0 -28.130 5.022 2.032
On-board samara-II Zw -20.640 13.670 2.064

- Zθ0 -1.501 12.840 1.939
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Figure 11. Real negative heave pole for samara-I,II

D. Heave Dynamics

The heave dynamics of the mechanical samara in hover are described by

ẇ − Zww = 0, (28)

which has the analytical solution
w(t) = w0e

Zwt. (29)
Because the stability derivative Zw is negative, the motion following a heave perturbation is a stable subsi-
dence, shown in Figure 12. For example, a positive heave perturbation will generate an upflow through the
mechanical samara rotor disk and increase thrust which acts in the negative direction of the z-body axis.
This also implies that in hover the mechanical samara will have a real negative pole, as shown in Figure
11. It is now possible to obtain the expression for altitude loss due to a velocity perturbation w0. For a
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Figure 12. Motion following a perturbation w0 of heave velocity

mechanical samara in hover w = Ż and

z(t) =
∫ t

0
wdt + z0 = w0

∫ t

0
eZwtdt + z0 (30)

where z0 is the initial altitude. Integrating from {0, t} yields

z(t) = z0 −
w0

Zw
[1− eZwt]. (31)
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For which the asymptotic value of altitude loss is

lim
t∞

= −w0

Zw
(32)

The mechanical samara altitude change in response to a perturbation of heave velocity is shown in Figure
13.
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Figure 13. Motion following a perturbation w0 of heave velocity

E. Heave response to pilot input

Consider a step input of collective pitch θ0, after which θ0 = conts. After a change of variables the heave
dynamic equation can be written as

ẇ1 − Zww1 = 0 (33)

where
w1(t) = w(t) +

Zθ0

Zw
θ0, ẇ1 = ẇ. (34)

The analytic solution of the first order differential equation is

w1(t) = w10e
Zwt, (35)

with w10 = {w+ Zθ0
Zw

θ0}t=0+ . For the mechanical samara in a steady hover w = 0, which reduces the solution
of w1(t) to

w1(t) =
Zθ0

Zw
θ0e

Zwt. (36)

Thus the heave velocity response to a step input of collective pitch reduces to

w(t) = −Zθ0

Zw
θ0(1− eZwt). (37)

An example of the first order character of the vertical speed response to a step input of collective pitch is
shown in Figure 14. This is a basic characteristic of the behavior of a mechanical samara, and is clearly
identifiable in results obtained from mathematical models and flight tests.

F. Closed Loop Feedback Control

Feedback control is used to correct for perturbations in the system in order to keep the vehicle at a reference
condition. The structure of the closed loop system is depicted in Figure 15 Gp(s) is the plant transfer
function, K(s) is the controller, Yd is the reference value, and Y is the output. Precise attitude data is
collected by the VICON motion capture system. The commanded altitude of the samara is maintained by
feeding back the error in position to a control loop which contains the system and actuator dynamics. The
closed loop system attempts to compensate for errors between the actual and reference height of the samara
by measuring the output response, feeding the measurement back, and comparing it to the reference value at
the summing junction. If there is a difference between the output and the reference, then the system drives
the plant to correct for the error.12
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Figure 14. Mechanical samara heave response to a step input of collective pitch.

Figure 15. Prototypical Feedback Control Loop

A proportional plus derivative plus integral (PID) controller was chosen for feedback control of the
Mechanical samara. A PID controller is given by the equation:

K(s) = Kp + Kds +
Ki

s
(38)

where Kp is the proportional gain and Kd is the derivative gain, and Ki is the integral gain. A PID controller
feeds the error plus the derivative of the error forward to the plant. The proportional gain provides the
necessary stiffness to allow the vehicle to approach the reference height. The P gain improves steady state
error but causes overshoot in the transient response, whereas the derivative gain improves transient response.
The integral term is proportional to both the magnitude and duration of the error in position, with the effect
of eliminating the steady-state error. Using the ground control station setup described in Figure 8 for closed
loop feedback control, several gain combinations were tested in order to find the PID gains which provided
the best transient response to a change in reference height. The gains in Table 6 provide the best transient
response. Figure 16 depicts a representative data set of a flight test with the implementation of the PID
controller using the gains in Table 6, demonstrating that the actual height closely matches the reference
height.

Table 6. PID Gains for feedback control.

Gain samara-I samara-II

Kp 0.211 0.344
Kd 0.889 0.133
Ki 0.028 0.020

The dashed line in Figure 16 is the altitude specified by the ground station, and the solid line is the
vehicles vertical flight path. The characteristic over-damping in climb, and under-damping in descent, of
samara-II is the result of gravitys effect on the vehicle. The settling time Ts of samara-I for a climbing
maneuver is 1.03 s with no overshoot. A descending maneuver settles to 90% of the final value within 1.45
s with an overshoot of 22%. The smaller samara-II reached 90% of its final value in 1.7 s with an overshoot
of 60% for a descent maneuver. The settling time for a climbing maneuver is 0.7 s with a 4% overshoot. It
can be seen that the forces induced on the body from a change in collective pitch are substantial compared
to the inertia of the vehicle, and increases in heave velocity are quickly damped after excitation.
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Figure 16. Implementation of PID control

VIII. Conclusion

This work presented the identification of a linear model describing the heave dynamics of two mechanical
samara vehicles for use in future control and state estimation. A visual positioning system was used to collect
flight data while the vehicles were piloted in an indoor laboratory. Eigenvalues of the heave dynamic model
were estimated by two system identification packages. The identified parameters were used in simulating
the vehicles response to heave and collective input perturbations as well as in the development of a PID
controller. Closed-loop implementation of the derived controller was demonstrated which utilized the visual
tracking system for position and velocity feedback. The characteristically under-damped response to a
descent maneuver was found which differs from the critically damped response to an ascent maneuver.
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