Slideshow image
next project

Sponsor: ONR (Marc Steinberg)
Collaborators: Kristi Morgansen (UW - PI), Jason Vance (College of Charleston)

figure1The extraordinary flight behavior of insects is characterized by robust flight performance in heterogeneous environments, consisting of gusts and turbulence that form around natural and man-made landscapes. This level of performance requires high bandwidth inner loop closure facilitated by tight integration of low-latency sensing, processing, and actuation. Such information is typically mechanosensory; examples include gyroscopic sensing halteres of Dipterans and the antenna of hawkmoths, and flow sensitive hairs in insects and bats. Successful navigation is realized through coupling of the inner loop with higher latency, far field sensory modalities such as vision and echolocation.

A major focus of the proposed research will be the analysis of experimental application of perturbations to flying animals, in the context of accurate flight dynamics and sensory processing models, to reveal how they utilize (and fuse) sensory data over different time scales.

Double-click on the image on the right
to start the movie >>

QuicktimeQuickTime format. File size is 1MB.
Quicktime Player required for viewing.

You can download a free player HERE



Dr. Sean Humbert

J. Sean Humbert, Ph.D.
Techno-Sciences Associate Professor of Aerospace Engineering Innovation
3182 Glenn L. Martin Hall
University of Maryland
College Park, MD 20742
301.405.0328 TEL
301.314.9001 FAX
humbert (at)

search this site


©2010 University of Maryland
Aero Home Clark School Home UMD Home